Final Report

Geospatial Mapping w/ Coverage Overlays

Group May1610:

Luke Milius
Brenda Lopez
Jacob Caithamer
Sarah Ulmer

Franklin Nelson

Advisors:

Swamy Ponpandi

Akhilesh Tyagi

Client:

Benazir Fateh

Nicholas Sitter

Table of Contents

e Project Design

o

o

o

Level 1
Level 2
Level 3

e Implementation Details

o Repository

o Database

o File Upload

o Mapping Engine

o Reporting Tool
e Testing

o Operation Manual

o

o

o

O

o

Deployment Notes

Firewall Configuration

Server Configuration

Database Configuration

Apache Configuration

Tomcat Configuration

Authentication Configuration

Accessing the Application

e Previous Designs

e Other Considerations

Coverage Overlays Final Report

Page 2 of 13

1. Project Design

Coverage Mapping Level 1
Database Mapping Engine Reporting Tool Level 2
Tables Markers Counties Line Graph Bar Graph Level 3

LeveL 1

Coverage Mapping

The structure of the entire project, containing the database, mapping engine, and reporting

tool along with their subcategories.

LeveL 2

Database

The database is the backbone of the entire project, both the mapping engine and reporting
tool rely upon the database in order to function properly. The database uses PostgreSQL
with PostGIS.

Mapping Engine
The first half of the analysis tools provided in this project. The mapping engine plots points

based on data retrieved from the database. The user will then be able to see a visual
representation of variations in a selected attribute based on the location the point is located

in.

Coverage Overlays Final Report Page 3 of 13

Reporting Tool

The second half of the analysis tools provided in this project. The reporting tool takes data
from a drive test in the database, then creates either a line graph comparing two different

attributes, or a bar graph of one attribute.

LeveL 3

Tables

The database contains 4 tables arranged in a hierarchical manner. The top level table,
driveTests stores all the drive tests that exist in the database, each with an id and name. Two
mid level tables are created for each drive test, logFiles stores log files, and averages stores
averages for every county. Finally, the bottom table, dataPoints stores data retrieved from a

csv file and is created for each log file.

Markers
Points are placed on the map corresponding to the latitude and longitude columns from the
dataPoints table. The color of each point is dependant on an attribute which is chosen by

the user. Points can be rendered individually, clustered together, or as a heat map.

Counties
Provides an average of the corresponding attribute drive test values and is displayed by

county. Each Iowa county is displayed accordingly.

Line Graph

Creates a line graph comparing two different attributes from the dataPoints table for

selected drive tests and counties.

Bar Graph

Creates a bar graph which shows a comparison of one attribute per county in lowa for

selected drive tests.

Coverage Overlays Final Report Page 4 of 13

2. Implementation Details

REPoOSITORY

Project is stored and version-controlled on Git repository at lowa State University that John

Deere also has access to.

DATABASE

A PostgreSQL database is used along with the PostGIS extension to store test data from csv

files generated by John Deere’s telematic devices. The database contains the following

tables:
dataPoints logFiles driveTests
dataid logfileid drivetestid
time name
fixtime drivetestid
logfileid averages
geom averageid
drivetestid
FiLe UpLoAD

In order to populate the database, a user may upload any number of CSV files into different

drive tests. These are uploaded via a POST request and processed by the server to ensure

that they are correctly formatted and contain the expected types of data. Once verified, the

data contained in the file is added to the database, and a response is sent to the client

indicating which files were successfully uploaded and which failed.

Coverage Overlays

Final Report Page 5 of 13

MaprPING ENGINE

Mapbox is used as the mapping engine for the project. In addition, two third party plugins,
leaflet-heat and leaflet-marker, are implemented to add extra rendering styles for markers
place on the map. A TIGER/Line® Shapefile is used to generate an outline of every county

in lowa.

ReporTING TooL

The reporting tool uses Scalable Vector Graphics, or SVG, to render line and bar graphs in
browser. We chose to use SVG because it is widely supported and performs well with large

amounts of data.

When a user makes a request on the reports page, that request is sent to the server via an

Ajax call, which processes it and extracts the relevant data from the database. The server
then orders this data, trims it if it is too large, and uses it to construct SVG markup of the
requested graph. Finally, this markup is sent back to the client and inserted into the DOM

for display.

3. Testing

Manual user testing was the primary method of testing for bugs in this project. Because the
mapping engine and reporting tool did not interact with each other in any way; and the
database needed to function correctly for either the map or reports to work, user testing was

sufficient for making sure each module functioned properly.

4. Operation Manual

Deployment Notes

The setup configuration listed here is for deploying to any Ubuntu 14.04 desktop or server.

This tool should run fine on any other version of linux or Windows/OSX. Although the

Coverage Overlays Final Report Page 6 of 13

configuration options would be different, the setup should follow the same concept

however.

Firewall Configuration

The firewall on the host can be set to allow only ports 22 and 80 as incoming, and
everything as outgoing. The rules could be set up more strict than this, but for sure, ssh

access is necessary to view log files while 80 is required to view the web application.

Server Configuration
For Ubuntu 14.04, use apt-get to install the necessary packages from the repository:

e sudo apt-get update

e sudo apt-get upgrade

e sudo apt-get install default-jre postgresql postgis apache2 tomcat7

e sudo apt-get install postgresql-9.3 postgresql-9.3-postgis-2.1 postgresql-client-9.3
The above packages should be everything needed to properly run the tool.

Database Configuration

The database must be configured with the correct tables and columns in order to persist the
uploaded data and precomputed averages. The .sql files used in the following commands
can be found at the root of the repository (under the may1610 folder). These .sql files will
need to be transferred to the remote server (if running remotely) in order to run them
through the psql commands. If a separate server is being used as the database server, these
commands will need to be altered to be run from your local machine to communicate with
the remote server.

e sudo vi /etc/postgresql/9.3/main/pg_hba.conf

o towards the bottom of the file, change the first line for the postgres user on
the very right side from peer to md5
e sudo -u postgres psql

o \password postgres

Coverage Overlays Final Report Page 7 of 13

o (Enter password for postgres user twice)
o \q
e sudo service postgresql restart
e psql -U postgres -f setupDatabase.sql
e This is only needed if you need to re-create the countyShapeFile
o shp2pgsql -s 4269 -1tl 2015 us county/tl 2015 us_county.shp
public.tl 2015 us county > countyShapeFile.sql
e psql -U postgres -d coverageOverlays -f countyShapeFile.sql
e psql -U postgres -d coverageOverlays -f createAverageTable.sql
e (Copy database.properties file into the
coverage-overlays/src/main/resources/properties directory.
o Contents of database.properties file:
m jdbc.driverClassName=org.postgresql.Driver
m jdbc.url=jdbc:postgresql://localhost:5432/coverageOverlays
m jdbc.username=postgres

m jdbc.password=(password for database goes here)

Apache Configuration
The default apache configuration should work. It would be good to check that in the

/etc/apache2/sites-enabled/000-default.conf file, that everything is commented out between
the two xml tags: <VirtualHost *:80> and </VirtualHost> except for the two log file lines:
e ErrorLog ${APACHE LOG_DIR}/error.log
e CustomLog ${APACHE LOG DIR}/access.log combined
This configuration should force the port 8080 that tomcat is providing on to be

automatically forwarded to port 80.

Tomcat Configuration

The first configuration of tomcat is to set the Java Virtual Machine max heap size in order

to accommodate the large amounts of data during large drive/log tests.

Coverage Overlays Final Report Page 8 of 13

e vi /etc/default/tomcat7
o Edit the JAVA OPTS variable by changing the -Xmx parameter to at least
512m (so it should look like: -Xmx512m).
e sudo service tomcat7 restart
The tomcat admin tool must be configured for maven to connect to the manager-script URL
API in order to deploy the application through maven. This can be run manually from a
local development machine or even from a build server. The server side configuration is as
follows:
e To enable management scripts:
o Add user with user roles : “manager-script” and “admin-script” for the
manager and host manager URL’s respectively using:
o sudo vi /etc/tomcat7/tomcat-users.xml
m <role rolename="manager-script"/>
m <role rolename="admin-script"/>
m <user username="tomcatmgr" password="(password goes here in
quotes)" roles="manager-script,admin-script"/>
e To add the connection info to your local machine or the machine that will run and
deploy using maven:
o Add the following server options to %oMAVEN PATH%/conf/settings.xml
on the maven configuration (not on the server):

m <?xml version="1.0" encoding="UTF-8"?>
<settings ...>
<servers>
<server>
<id>TomcatServer</id>
<username>tomcatmgr</username>
<password>(password goes here)</password>
</server>
</servers>
</settings>

Coverage Overlays Final Report Page 9 of 13

o The deployment configuration is already included in the project’s pom.xml,
so there are three options that can be used to take advantage of this scripted
deployment:

m Deploy works for deploying the web application for the first time,
after that, if the application is already deployed, this option will result
in an error stating that there is already an application deployed at this
endpoint

e mvn tomcat7:deploy

m Undeploy works if you would like to undeploy the application before
deploying a new one. This can also be useful if you would like to
undeploy the web application altogether and take it offline.

e mvn tomcat7:undeploy

m Redeploy is probably the most used option for this command.
Redeploy runs undeploy, then deploy in the same command, right
after one another. This can be much quicker to use since it does
everything for you in one command.

e mvn tomcat7:redeploy

Authentication Configuration

Currently, the application authentication is configured to use authentication that is hard
coded into the Spring Framework configuration files. In the
may1610/coverage-overlays/src/main/resources/contexts/spring-security.xml file.

Towards the bottom of that file, there is a section that looks like the xml group below. The
authentication-provider is the id or class name of the Spring Bean that will be handling the
authentication. This can either be a bean defined in the same file or it can be a java class file
that authenticates via the database or an authentication server like LDAP or Active

Directory.

<security:authentication-manager>

Coverage Overlays Final Report Page 10 of 13

<security:authentication-provider
user-service-ref="userDetailsService">
<security:password-encoder ref="passwordEncoder" />
</security:authentication-provider>

</security:authentication-manager>

The following bean configures to use Spring Security’s password encoder to hash all
passwords:
<bean
class="org.springframework.security.authentication.encoding.ShaPasswordEncoder"
id="passwordEncoder">
<constructor-arg value="256"/>

</bean>

Finally, the last portion is the list of in-memory users with their hashed password value:
<security:user-service id="userDetailsService">
<security:user name="admin" password="PasswordHashHere"
authorities="ROLE_USER, ROLE_ADMIN" />
<security:user name="user" password="PasswordHashHere"
authorities="ROLE_USER" />

</security:user-service>

Accessing the Application

After the above configuration is complete, the web application should be up and running
correctly. The web application should be accessible by either navigating to the IP address of

the machine it is running on or the DNS name that is assigned to that machine.

5. Previous Designs

Coverage Overlays Final Report Page 11 of 13

Reporting Tool

Northwest lowa Region Signal Strength

100

50

a

&F E oo

@ ol
FFF S s

& d"" @6#\ oﬁcj25§ o.q,(‘ & o & d.\':' I

i
& & &
¢ ¢ & F &

Signal Strength

m0-50 m50-100

Our original design for the reporting tool portion of the project included 3-D graphs such as
the one pictured above. After receiving feedback from our client, this type of tool was

determined to be not very useful and we did not implement this feature.

Mapping Tool

Our original design was to display a heat map of all the lowa counties by a single attribute
filtered by year. The original design did not include the individual markers as points,
clusters, and heat. To make our project modular, we decided to have a drop down menus to

select the drive test(s), date, attribute, and to decide how to display the data.

Coverage Overlays Final Report Page 12 of 13

We also considered integrating both the mapping and reporting tools into one larger page,
which would allow users to more easily compare different types of data. However, we

scrapped this because of page space limitations, as well as for ease of development.

6. Other Considerations

Deploying the project into the Amazon Web Server for the first time was a huge challenge
because it was deployed far into the development. It took quite a while to figure out all of
the dependencies to install for the environment and to get permissions set correctly to be

both secure but non-intrusive to the workings of the web application.

A second major challenge included implementing spring security into an existing spring
web application. We found it was much easier to integrate spring security into a new
application for future work. For this project, there were several attempts made but each one
either broke some functionality of the application or prevented it from working at all.
Eventually, we found a conflicting dependency between two versions of spring and jetty

and were able to get those resolved with a different version of jetty.

Coverage Overlays Final Report Page 13 of 13

